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The so-called weak-beam (WB) technique has been widely employed to elucidate dislocation
near-core properties. To a very large extent WB images reflect the intimate structure of lattice
defects through signals that may, however, be significantly convoluted. This contribution
reviews selected situations where various factors affecting images must be taken into account.
A less-common method to investigate crystal order under WB is also reported.
C© 2006 Springer Science + Business Media, Inc.

1. Introduction
Dislocation analysis by transmission electron microscopy
(TEM) under diffraction contrast, including in situ strain-
ing experiments, is one of the fields Hiroyashu Saka
has significantly contributed to. Saka was first to point
out that, in practice, the detrimental effects of crystal
anisotropy on dislocation identification can be avoided
provided one operates under weak-beam conditions [1].
All that one could do before that was to produce a number
of images simulated under all possibly relevant dynamical
bright/dark-field conditions and to try to figure out which
candidate Burgers vector(s) would provide optimized im-
age consistency with a variety of butterfly-wing-like im-
ages. Saka’s remark, which may appear as rather petty
to a researcher unfamiliar with the issue, has immensely
facilitated subsequent dislocation investigations in highly
anisotropic materials such as minerals and intermetallic
alloys. In addition to straightforward Burgers vector iden-
tification, this has also enabled direct, experimental access
to dislocation fine structure in anisotropic metals with no
special expertise required other than being able to produce
a weak-beam image, which is actually quite trivial.

In recognition of the impact of Saka’s contributions to
the field, this paper will review selected achievements in
dislocation analysis at core level with attention paid to
the extent dislocation core structure is or is not reflected
under WB conditions, and to the implications of this. In a
first part though, and because in the author’s view this is
somewhat inadequately addressed in textbooks and review
articles, some principles of the WB method and suitable
experimental procedures will be summed up (Section 2).
Section 3 elaborates on some general properties of dislo-
cation images. Section 4 will discuss applications of the

WB method to measuring distances between dislocations.
Finally, Section 5 accounts for a particular use made of
weak beams to investigate crystal order.

2. The weak-beam method: principles and
practical knacks

“Weak-beam” refers to imaging under diffraction contrast
with a reflection g set far off the Bragg condition. It is only
from crystal volumes where lattice distortion is enough
to restore that particular Bragg condition locally that a
visible, bright signal emerges from an otherwise faint
background.

2.1. Resolution under weak beam
The weak-beam peak can be regarded as arising from the
constructive interference of the waves originating from
several scattering atoms (Fig. 1), thence resolution under
WB is related to the number of atoms actually needed to
generate a detectable peak. For that simple reason, resolu-
tion cannot be thought of as being less than 3 to 4 atomic
distances, that is, almost one order of magnitude larger
than the nominal resolution of the latest generations of
electron microscopes. It is worth noting that the resolu-
tion of weak-beam images is thus not instrument limited.
Yet, in setting up imaging conditions in the microscope
one should keep in mind that inelastically scattered elec-
trons may blur images significantly and that every time
the objective aperture, the deflection coils and sample po-
sition in the objective pole piece have been touched, then
objective astigmatism is to be corrected for.

The larger the excursion from the Bragg condition un-
der reflection g, as measured by the deviation parameter
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Figure 1 The weak-beam signal is engendered in the highly distorted
vicinity of a dislocation where several atoms are locally in Bragg positions
for the incident beam.

sg, the greater the distortion required to restore this Bragg
condition. Since lattice rotation is conversely proportional
to the distance to the core, the image of a dislocation is,
as sg is increased, shifted toward the geometrical pro-
jection of the dislocation core in the diffracted direction.
Images narrow accordingly but since the peak intensity
fades rapidly out (as sg

−2), limitations in imaging defects
arise soon. It should be realized that however close a dis-
location image is to the geometrical projection of the dis-
location core, there is in principle no coincidence between
them (see however [2, 3]). Existing shifts may be further
influenced by close-by distortion-generating centres such
as in dissociated configurations or in subboundaries.

2.2. Weak-beam conditions
Some confusion remains in the literature as to what ade-
quate or standard weak-beam conditions should be which
returns us to early contributions (for a review see [4]).
The WB imaging technique was made available at a
time where, for lack of precise knowledge on dissocia-
tion widths in certain model crystals, theoretical analyses
of dislocation properties involving cross-slip could not be
accounted for with reasonable confidence. It could not be
ascertained for instance whether dislocations in silicon
were dissociated.

It is worth keeping in mind that the so-called “weak-
beam” conditions have been devised from computer-
generated profiles and not from real situations and this
is because the faintest signals to be seen on a fluores-
cent screen were generally far too strong to qualify for the
remotest weak-beam condition. The simulated profiles in-
dicated that in order to be able to resolve the peaks of two

companion Shockley partials in Cu with the microscope,
one should make sure that

(i) sg, the deviation from the Bragg condition (in the
defect-free volume) be more than 0.2 nm−1,
(ii) g.b ≤ 2 to avoid extra peaks (b is the Burgers vector

of the parent, undissociated dislocation),
(iii) the product sg ξ g be larger than 5 to ensure good
contrast (where ξ g is the extinction distance for the family
of diffracting planes considered) and
(iv) no reflection is strongly excited.

These conditions are specific a given combination of crys-
tal parameter (that of copper) and extinction distance (g =
220). The so-called “weak-beam” conditions given above
are, in addition, strictly applicable to the current operating
voltage, 100 kV, at the time these conditions were pre-
scribed. The situation has of course considerably evolved
since [5]. The variety of crystals investigated so far cov-
ers a wide range of cell parameters (e.g. ∼ up to 1.3 nm
in garnets), the standard operating voltage turns out to
be 200 kV. Most importantly, the dislocation properties
tackled in TEM have widened beyond the initial measure-
ments of dissociation distances, that is, of stacking-fault
energies in crystals [6]. Last but not least, image inten-
sifiers have made it possible to work under fairly weak
signals, recording times have shortened considerably (at
least one order of magnitude between the times to expose
regular and imaging plates) and instrumental drifts have
been cut down. As a result, instead of the stringent and
too specific conditions (i)–(iv) above, the following flex-
ible recommendations can be followed with appreciable
benefit in most cases:

(a) image adjustment should be concluded whenever the
resolution adequate to tackle a given situation is attained,
with the restriction that

(b) for the defect under investigation, every contrast pe-
culiarity in the image(s) makes sense (see also [5]).

Should some doubt arise in interpreting specific
contrast properties, such as the unexpected appear-
ance/disappearance of certain partials, more (fewer)
than expected peaks—all illustrated in the following
sections,—then one should have recourse to image sim-
ulation which usually fixes the problem. For this reason,
the restriction to g.b ≤ 2 is unnecessary if not somewhat
unrealistic in certain crystals (e.g. g.b = 4, for g parallel
to b in spinel). On the other hand, although sg ∼ 0.2 nm−1

is not inappropriate in many standard cases, recommen-
dation (a) makes a deviation as large as 0.2 nm−1 use-
lessly stringent in practice. This is so, for instance, in the
case of widely separated partials or else when comparing
microstructural properties after various deformation con-
ditions, in which case all is needed is a wholesale view
of dislocation organization and/or preferred dislocation
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Figure 2 Chart of χ = (n − 1) λ/(2 a2) versus n in Al, Cu and Si (see Equation 1). Since χ is also equal to sg/(h2 + k2 + l2), the values of n to achieve sg

= 0.2 nm−1 for g = 111, 200 or 220 come out as the intersections of the three inclined thick lines (for Cu, Al and Si) by horizontal lines at χ = 0.066,
0.05 and 0.025 respectively. The lattice parameters of Ni3Al and TiAl are within 1% of those of Cu and Al, respectively.

directions. A good weak-beam image of a microstructural
organization is as difficult, if not less so, to set up than the
same under dynamical conditions and this weak-beam im-
age imparts far more information than the regular bright-
or dark-field image of the same area. There are of course
situations where sg needs to be increase beyond 0.2 nm−1.

The deviation sg can be measured from the coordinate
n (in units of g) where the Ewald sphere intersects the
systematic row. It is written

sg = (n − 1)g2 λ/2 (1)

where λ is the electron wavelength. The coordinate n is
utilized in the convenient (g − ng) notation often used to
define a given imaging condition. That can be equiva-
lently given from the coordinate, n/2, of the projection
of the centre of the Ewald sphere on the systematic row.
The knowledge of n does not facilitate comparisons be-
tween materials. Fig. 2 shows that in order to attain sg =
0.2 nm−1, in Cu, Al and Si under say the 200 reflection,
one needs to set n at 6.2, 7.4 and 12.7, respectively. Ad-
equate deviations from the Bragg conditions, tested on a
number of crystals such as Cu, Al, Si and intermetallic
alloys, e.g. Ni3Al, TiAl, are such that n usually lies in
the ranges 2.5–7, 4–10 and 6–12 for the 220, 200 and
111 reflections, respectively. It is clear that the (g − 3g)
condition which has often been employed to generate
WB images in a variety of materials, is rather difficult to
justify.

In practice, rather than satisfying a given set of imaging
parameters, one should prefer conducting the final adjust-

ments in the image mode under the selected reflection, and
that includes correction for astigmatism. In the course of
routine observations, there is no need to measure sg ac-
curately unless recourse to simulation is expected. It is
actually far more efficient to check the image preferably
to the diffraction pattern, and to adjust image quality to the
problem tackled. This is preferably achieved directly from
a TV monitor after image intensification, a pivotal equip-
ment in weak-beam imaging, making sure that no con-
trast artifact is accidentally introduced. As illustrated in
the following, counterintuitive effects may occur though,
and this makes it useful if not indispensable to check in
situ still whether or not a given unusual feature is stable
against slight changes in sg. Note that reflections seldom
used because of their relatively poor structure factors are
worth trying. For instance, 224 reflections in fcc-based
TiAl produce useful weak-beam images.

3. Image properties
A recurrent issue arises from the fact that weak-beam im-
ages usually reflect the defect fine structure far too well.
This can be misleading for images are sometimes exam-
ined (i) as if there were a one-to-one geometrical corre-
spondence between what one sees and the real defect and
(ii) as if image intensities could unambiguously inform
on Burgers vectors.

3.1. Peak position
For obvious reasons, dissociation distances should be
measured with the best possible precision and that in turn
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implies that the position of dislocation peaks can be reli-
ably predicted.

3.1.1. The CRW criterion
Cockayne, Ray and Whelan (CRW) [7] have proposed
an approximate derivation of the image shift between the
true projection of a dislocation and the position of the
weak-beam peak, predicting that the latter will arise from
crystal regions where

∂[g.R(x, z)]/∂z = −sg (2a)

and

∂2[g.R(x, z)]/∂z2 = 0 (2b)

where condition (2a) reflects the fact that at R(x, z), the
local lattice rotation restores a departure sg from the Bragg
condition while condition (2b) ensures that (2a) is satis-
fied over some distance along the direction of the incident
beam. The longer this distance, the brighter the signal.
How long should (2a) and (2b) be simultaneously satis-
fied along a column in order to supply a visible peak is,
however, not part of the criterion as it is actually hard to
assess quantitatively. In many instances, the CRW crite-
rion has proved an extremely useful guideline (see Section
3.4) but it has inherent limitations that have been quite ex-
tensively discussed.

The mechanisms involved in the formation of a weak-
beam image are indeed not as entirely straightforward
as hypothesized for the derivation of the CRW criterion.
Howie et al. [8] have shown that, because of possible in-
terband transitions in the dispersion surface (see also [9]),
condition (2) is only a rough approximation for predict-
ing image position. At the origin of the peak shift existing
between a dislocation and its image is the rapidly vary-
ing distortion field next to the dislocation core that may
restore Bragg conditions for reflections other than g and
that encourage dynamical scattering locally. It is interest-
ing to note that even numerical simulations are not totally
unambiguous since the outcome depends on the approach
employed to account for the interactions of electrons with
a defected crystal (see Fig. 11 in [8]), and that may in-
clude whether or not the so-called column approximation
is taken into account [10].

It is for example postulated (see [11], p. 218) that
in the Bloch wave formulation of the dynamical theory,
the crystal potential can be re-written in the deformable
ion approximation (i.e. V(r) → V(r − R(r)), an assump-
tion which is valid only if the crystal potential deforms
smoothly. In fact the formulation is said to be applicable
provided R(r) does not change significantly in a lattice
distance. This is true at some distance from the core, that
is, for ‘dynamical’ dislocation images, when a large vol-

ume of the crystal can be regarded as roughly perfect and
translated uniformly by R. For the above-mentioned stan-
dard value of sg = 0.2 nm−1 in weak-beam, an order of
magnitude for ∂ |R|/∂z is given by ∂Rg/∂z = 0.2/|g| where
Rg is the projection of R on g. ∂Rg/∂z amounts to a few per
cent, actually a significant distortion for which the above
approximation is therefore arguable. A similar remark
may apply to the treatment the position-dependent pertur-
bation of the perfect crystal potential by a lattice defect
(see [8]). It is in effect unclear why, in the highly distorted
region of interest for image formation under weak-beam
conditions, this can still be regarded as a perturbation.

What these considerations suggest is that numerical
simulations of weak-beam images should be utilized with
some care since they may not always provide an accurate
quantitative answer. Which theoretical approach, that is,
which approximation, is best suited to this aim has not
been convincingly discussed yet.

3.1.2. Graphical analysis
Certain of the above considerations on image shift are bet-
ter understood from the plot of the locus of points defined
by (∂g.R(x, z)/ ∂z) = −sg with the vertical axis taken
along z and the dislocation along y perpendicular to the
page (Fig. 3) [12, 13]. The CRW conditions are obviously
satisfied wherever the tangent to the curve is vertical,
along the beam. Fig. 3 summarizes most of the effects of
interest in the cases of an undissociated edge dislocation
in Al and of a hypothetically undissociated dislocation in
Cu (sg = 0.2 nm−1, g is parallel to b). The envelopes of
the lobes located in the x ≥ 0 and x ≤ 0 regions and pass-
ing through {x = 0, z = 0} represent condition (2a) for

Figure 3 Contour plots of Equation 1 resolved under the anisotropic elastic-
ity approximation for an undissociated dislocation in Al (sg = − 0.2 nm−1)
and Cu (sg = 0.2 nm−1). The z coordinate is taken along the electron beam.
The origin of coordinates is at the dislocation core. The corresponding two-
beam weak-beam simulated profiles are superimposed for comparison with
the same scale along x. The thin curve on the Al side corresponds to an
8-beam simulation. It is noted that the simulated image is rather stable with
respect to the number of beams incorporated in the simulation.
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Al and Cu, respectively (at variance from Al, Cu exhibits
some elastic anisotropy). The thick profiles are computed
under the two-beam approximation. In Cu, the simulated
image peaks at a distance xs to the dislocation core that is
smaller than that the shift, xp, predicted from conditions
(2). The difference is quite significant amounting for ex-
ample to xp − xs = 1.3 nm in Cu when xs = 1.9 nm,
and xp − xs = 1.2 nm in Al when xs = 1.7 nm. The thin
profile that peaks in the x ≤ 0 Al side is calculated us-
ing eight beams of the systematic row with the imaging
conditions unchanged otherwise. There is no significant
difference between the 2-beam and 8-beam cases. In each
of the profiles shown in Fig. 3, the faint peak is consis-
tent with the ‘core peak’ effect which, as demonstrated by
Humphreys et al. [14], is always located at x = 0.

In addition to the effects discussed in the previous sec-
tion, volume changes may play a role in defining the peak
position. In the zone where image formation is expected
to take place under weak-beam conditions, that is, within
several b from the dislocation core, the crystal is markedly
compressed in places and dilated in others. Under the
simplistic, optical viewpoint of an image formed by lo-
cal constructive interference from a few scattering atoms,
the Bragg law cannot be satisfied where s local

g is expected
to cancel out under the kinematical incidence defined by
sg = 0.2 nm−1. An order of magnitude of ∂ux/∂x within
5b from the core of an edge dislocation is 1% (ux is the
displacement along the Burgers vector of a dislocation
whose glide plane is parallel to the foil) corresponding to
a noticeable fraction of the Bragg angle.

3.2. Burgers vector analysis
Before entering the question of Burgers vector analysis by
contrast considerations of dislocation images, it is worth
recalling that in wedge-shaped samples and for disloca-
tions inclined to the foil, the scalar product g.b, including
its sign, can be determined from the number, p, of thick-
ness fringes terminating at the point of emergence of the
dislocation [15]. This property has been applied to several
concrete cases and its limitations discussed [16, 17].

Consider now a pair of parallel dislocations with iden-
tical 1/2[011] Burgers vectors, as is the case in a number
of intermetallic alloys with an fcc-based structure where
those pairs are interconnected by an antiphase boundary
(APB). g.b being the same for both partials, one would ex-
pect them to exhibit similar intensities, a property which is
true only for large separation distances. This is illustrated
in Fig. 4a showing the computed image profile of a pair of
partials interconnected by an APB, 5 nm wide. The con-
figuration is nearly parallel to the projection plane. One
sees that the profile is markedly asymmetric. There is a
mirror plane at x = 0 between the two images for ± sg
(not shown). As sketched in Fig. 4b where points A and
B are located at equivalent positions for dislocations 1
and 2, respectively, the origin of the asymmetry is rather

Figure 4 The markedly asymmetric image profile of a pair of partials with
identical Burgers vectors. (a) screw and edge 1/2[110] partials (thick and
thin lines, respectively) in Ni3Al. The partials border an APB, not visible
under the fundamental g = 220 operating reflection, sg = 0.2 nm−1. The
peak shifts together with the differences between the real separation (5 nm
in both cases) and the peak separations should be noted. The foil normal
is nearly parallel to the beam direction and to the normal to the (111)
slip/dissociation plane of the dislocation. (b) the peak asymmetry originates
from the fact that lattice rotations are not the same at A and B.

straightforward since r2A differs from r1B even though
r1A = r2B, thus implying different lattice rotations at
points A and B. This intrinsic profile asymmetry must be
kept in mind when investigating dissociation modes [18].
For instance, there has been a debate as to which of the
following dissociation schemes

〈011〉 → 1/2〈011〉 + APB + 1/2〈011〉 (3)

〈011〉 → 1/3〈112〉 + SF + 1/3〈121〉 (4)

prevails in certain L12 ordered alloys (SF stands for a
stacking fault). To discriminate between the two reactions,
comparing the peak relative intensities may be mislead-
ing and, instead, one needs a complete set of weak-beam
images. This is shown in Fig. 5 in the case of TiAl (L10

structure). The choice of TiAl, whose unit cell is compat-
ible with reactions (3) and (4), will enable a comparison
of the above two reactions with reaction (5) below. The
image of configuration (3) is again asymmetrical (Fig.
5a), as is the case for the image of configuration (4) (Fig.
5b). Incidentally, it is noted that the profiles in Fig. 5a
can be entirely superimposed to those of Fig. 5b which is
due to the fact that, under the imaging conditions chosen
here (g parallel to b = [011]), the partials are all imaged
under the same value of g.bpartial (i.e. either 2 or − 2).
Hence, for reactions (3) and (4) to be distinguished it is
necessary to check whether companion partials can be set
out of contrast separately. It is an entirely general rule that
to infer Burgers vectors of dislocation partials one should
not rely on differences in the relative peak intensities.

In practice, a rather unusual case of an image asymme-
try is provided by TiAl (Fig. 6). Neither reaction (3) and
(4) is actually consistent with observations in this case
since, under g parallel to the screw orientation and under
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Figure 5 Simulated weak-beam images and corresponding profiles of a
60◦ dislocation in TiAl (b = [011]) for various hypothesized dissociation
modes. (a) reaction (3). (b) reaction (4). (c) reaction (5). The diffraction
vector g is parallel to the Burgers vector of the undissociated dislocation;
each column shows the same configuration under sg = ± 0.2 nm−1.

a given sign of the (sg g.b) product, two partials with
comparable intensities are observed (Fig. 6a) whilst one
of the fades out upon reversal of this sign (Fig. 6b). As
demonstrated by the entire consistency between observa-
tions and image simulations (Fig. 5), all covering a large
variety of imaging conditions [19], this behaviour arises
from the following dissociation mode

〈011〉 → 1/6 <112] + SISF + 1/6 <154] (5)

where SISF stands for superlattice intrinsic SF. Reflect-
ing the tetragonal symmetry of TiAl, the <hkl] notation
allows every permutation between h and k while ± l is as-
cribed the third position. In Fig. 5c the 1/6 <112] and 1/6
<154] partials are located above and below and viewed
under |g.b| = 1 and 3, respectively. The unusual contrast
behaviour observed here stems from the property of image
asymmetry discussed above which, under the appropriate
sign of sg g.b, enhances the image of one partial to the
expense of its companion’s and conversely. What happens
is that when conditions favour the peak of the 1/6 <112]
partial (imaged under |g.b| = 1), then that of its com-
panion (|g.b| = 3) is attenuated and both fall at about the
same level. By contrast, when conditions favour the peak
of the 1/6 <154] partial, its companion’s is weakened so
dramatically that is nearly invisible. In Fig. 5c one may
notice the faint sub-peak that appears in the image of the
lower 1/6 <154] partial regardless of whether sg is posi-
tive or negative. This sub-peak is consistent with the fact
that this partial is viewed under |g.b| = 3 (see Fig. 7.17
in [11]). The generation of elongated faulted dipoles (FD
in Fig. 6c) is amongst the many implications of this last
dissociation reaction for this is encouraged when the 1/6
<154] partial is trailing, and hampered otherwise [20]. It
has been accordingly predicted that FD production should
be markedly stress-orientation dependent and this is fully
confirmed by experiments [21]. Incidentally, why, in spite
of certain analogies between the two ordered structures,

Figure 6 A weak-beam observation in TiAl attesting to the dissociation of
a dislocation according to reaction (5). Under g = 022, the image shows
two peaks with comparable intensity, while one of the two peaks disappears
as the sign of sg g.b is reversed. (Courtesy Dr Grégori).

faulted dipoles comprise an intrinsic stacking fault and an
extrinsic in Ni3Al and TiAl, respectively, remains mys-
terious to the present author. This point should deserve
a systematic investigation in Ni3Al in the vein of that
conducted by Hemker and Viguier in TiAl [22].

Finally, it is worth recalling that a computer investi-
gation of dislocation contrast under weak-beam condi-
tions, and in particular of extinction conditions, is not all
straightforward. It requires that a set of simulated images
be compared, hence that these images are all generated
under a common intensity scale. Deciding whether or not
a simulated weak-beam image is visible, faint or invisible
is relatively easy under dynamical conditions where the
maximum intensity is that of the background. It is hardly
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Figure 7 Simulated images and profiles of a single dislocation in Al, g = 220 parallel to b = 1/2[110] under weak-beam conditions in the vicinity of the
g-3g condition.

possible when the background is black and no fixed ref-
erence level for a maximum is available (the computed
height of a dislocation peak under weak beam may vary
by several orders of magnitude). This difficulty was the
main reason why a valid analysis of the weak-beam con-
trast of partial dislocations had not been made available for
fractional values of g.b although this has obvious prac-
tical interest in fcc and hcp metals, in a wide range of
ordered alloys, as well as in semiconductors with dia-
mond structure. For several decades, all what one could
make use of was (i) extinction rules that had been derived
from simulations carried out on fractional g.b values un-
der dynamical conditions [23] and whose relevance to
weak-beam images is to be ascertained or else (ii) con-
siderations on peak intensity which, as seen above, can
reveal quite misleading (see however [24]). A method for
comparing weak-beam images has been designed a few
years ago [25], it mimics that employed to calibrate image
plates and it is made available in the CUFOUR package
[26]. Yet, the conditions of visibility/invisibility of dislo-
cation partials (under g.b = + 1/3, + 2/3, etc. . .) remain
to be established.

In summary for this section, peak intensity may not
always inform on g.b, hence on b, and this remains true
for relative peak intensities between companion partials.

3.3. Multiple images
In some cases a double peak may be mistakenly inter-
preted as attesting to a truly split dislocation. Multiple
images under either a 200 or a 220 reflection have been
reported in intermetallic alloys for a pair of dislocations
with identical Burgers vectors (b = 1/2 <110> in L12

alloys) connected by an APB (Ni3Al [27], Co3Ti [28];
C.B. Carter and P. Veyssière: unpublished results). A sim-

ilar property has been identified in NiAl (B2, bcc-related
ordered structure) for two families of Burgers vectors,
<111> and <100>, imaged in the same area under the
same weak-beam condition [29]. In every case where this
has been tried, a slight excursion from the exact range of
sg values where image splitting occurs (e.g. next to g-3g in
L12 alloys) was enough to restore an artifact-free image.

For clarity, we investigate this effect for an isolated,
undissociated dislocation in the case of Al with b =
1/2[110] imaged under g = 220, that is, when g.b =
2 for no extra peak is then expected from the two-beam
approximation (see Fig. 7.17 in [11]). Images of this dis-
location are presented Fig. 7a and b where it is seen that,
as sg is varied, a secondary image appears and disappears
around n = 2.95–3. For n lower than 2.9 or larger than
3.1 the dislocation peak is single and well defined. The
same simulation again conducted in Al on a hypothet-
ical pair of dislocations with b = 1/2[110] located at
5 nm of each other in the glide plane shows a similar far
more pronounced effect of image splitting for n = 3 –
3.05 (Fig. 7c and d). A similar numerical test conducted
in Ni3Al with the above configuration indicates that the
effect is not clearly dependent upon elastic anisotropy.
What counts though is the number and the nature of the
beams involved in the simulation since the splitting never
appears in the two-beam simulations whereas it disap-
pears from eight-beam images when the 440 reflection
is removed.

3.4. Elastically anisotropic crystals
As mentioned earlier, image complexity in crystals with
large anisotropy ratios makes dislocation identification
under dynamical bright-or dark-field conditions impos-
sible in practice without the support of extensive image
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Figure 8 Contour maps of u.(∂R/∂z) in β-CuZn (u is a unit vector). (a) u is parallel to b = [111], thus u.(∂R/∂z) = ∂R///∂z.(b) u = [1̄1̄2]/
√

6 is parallel
to Ox, whence u. (∂R/∂z = ∂R⊥/∂z). (c) u = [001] and u. (∂R/∂z) = (∂R///∂z + (2/3)1/2∂R⊥/∂z).

simulations. Saka [1] was the first to draw attention
on the fact that, provided analyses be conducted under
weak-beam conditions, the invisibility criterion can be
safely applied, and that weak-beam images satisfacto-
rily reflect the dislocation fine structure (we will see
in Section 4.2 that anisotropy cannot be completely
disregarded though).

Saka’s conjecture has been investigated to some ex-
tent [25] in the case of β-CuZn which is cubic (bcc-
based B2 structure) and whose anisotropy ratio, A = 2
c44/(c11 − c12) = 8, is large. The issue regarding dislo-
cation extinction under weak-beam conditions was exam-
ined by image simulation that confirmed the occurrence
of extinction under g.b = 0. Conditions of image forma-
tion were then studied from maps of (∂g.R/∂z) at constant
sg. The former expression, which can be re-written as
g.(∂R/∂z), reflects the lattice distortion along the electron
path projected along a direction selected from the diffrac-
tion pattern. A simplified way to account for anisotropic
elasticity is to analyze the contribution of the displace-
ment field normal to a screw dislocation, R⊥{Ry⊥, Rz⊥},
for this component vanishes in isotropic crystals (note that
g.R⊥ reduces to g.Ry⊥). Anisotropy effects are then man-
ifested through the relative contributions of g.(∂R⊥/∂z)
and g.(∂R///∂z) to dislocation images.

The image of a dislocation comprises a dip and a tail
component [11] which is why moderately anisotropic
crystals imaged in bright- and dark-field near-Bragg con-
ditions gives rise (i) to counterintuitive dislocation image
symmetries and (ii) to a sometimes pronounced residual
screw dislocation contrast under g.b = 0. As contrast
arises from any crystal volume that is tilted off the Bragg
condition, even of modest magnitude, the superimposition
of a finite R⊥ may modify the tail component of the im-
age of a dislocation considerably. What happens in weak-
beam is that R⊥ being small, g.(∂R⊥/∂z) cannot be large
enough to compensate for large lattice rotations and this
eliminates the tail contribution. Furthermore, g.(∂R⊥/∂z)
is quite smaller than g.(∂R///∂z) so that it is essentially
the latter quantity that determines image peak position.

The situation is a little more intricate for highly
anisotropic crystals such as β-CuZn since the magnitudes
of g.(∂R⊥/∂z) and g.(∂R///∂z) are no longer significantly

different [25]. This is illustrated by considering the three
cases represented in Fig. 8 of the projection of (∂R/∂z)
onto a selected unit vector, u. Fig. 8a shows that the
profile of ∂ R///∂z (ua = [111]/

√
3) exhibits two ver-

tical segments which by virtue of conditions (2) indicate
some image reinforcement in this column. Fig. 8b (ub =
[1̄1̄2]/

√
6) shows that in ∂ R⊥/∂z, there are no such ver-

tical regions and image intensity should be accordingly
weak. It is noted that, given these unit vectors, ∂ R///∂z
is positive where ∂ R⊥/∂z is negative and vice versa. The
unit vector uc = [001] provides a combination of the two
preceding fields, i.e. ∂R[001]/∂z = ∂ R///∂z + (2/3)1/2

∂ R⊥/∂z (Fig. 8c). One can see that the horizontal lobe
in Fig. 8a is largely cancelled out by ∂ R⊥/∂z, leaving
a V-shaped contour map that includes significantly elon-
gated vertical segments. The images simulated for each
case (where g now substitutes for u) are fairly consistent,
qualitatively, with the three profiles predicted from the
CRW conditions (Section 3.1.1).

Finally, one may notice that regardless of crystal
anisotropy and given g, the contour maps remain self
similar as sg is varied. This property actually comes out
analytically [25].

Although one cannot exclude though to encounter crys-
tals where ∂ R⊥/∂z has more dramatic effects on weak-
beam images of dislocations than what has been character-
ized for β-CuZn, it can be concluded that Saka’s remark
was largely founded.

4. Selected applications
4.1. Dipole heights
In cyclically deformed materials, the dislocation mi-
crostructure is remarkably self-organized. Copper single
crystals deformed in single slip exhibit well-defined walls
that contain a high density of dipolar configurations, es-
sentially under the form of edge prismatic loops. A major
issue in understanding and modelling fatigue properties
in metals is that of loop formation. Elucidating the mech-
anisms thus involved necessitates a fair knowledge of
loop distribution including height, length and loop type,
that is, vacancy or interstitial. For small loop heights,
the characterization must be conducted under weak-beam

2698



CHARACTERIZATION OF REAL MATERIALS

Figure 9 Dependence of the image width of an edge dipole in aluminium on the height of the dipole for g parallel to b for sg = ± 0.2 nm−1.

conditions. Loop length measurements cause no serious
experimental problems whereas determining dipole na-
ture is fairly complicated since this necessitates that the
width variation of a given loop be checked in g/ − g exper-
iments and monitored upon tilting [11]. It should be kept
in mind that in fatigue walls, overlaps between images
of neighbouring dipoles are, however, extremely frequent
and subject to great variations upon tilting. Measuring
dipole heights (i.e. distances between the slip planes of
the two companion dislocations) is again a non trivial
experiment. Since at equilibrium edge dipoles of undis-
sociated dislocations are inclined 45◦ to the slip plane,
the height of a dipole is equal to its width projected onto
the slip plane. Antonopoulos et al. [30] have identified
this width to the mean value of the broadened and nar-
rowed images measured in a g/-g experiment, with g taken
parallel to b and the slip plane parallel to the plane of ob-
servation. This method has been employed ever since. A
lower limit for actual dipolar height yobs of 3 nm has been
reported in Cu [31], 2 nm in Ni [32], and down to 1 nm in
AISI stainless steel [33] nearing the ultimate resolution in
weak beam. This is what we discuss in the following.

We simulate dipole contrast under sg = ± 0.2 nm−1

for an accelerating voltage of 200 kV, as a function of
dipole height, ytrue, varied from 1 nm to about 7 nm (Fig.
9). For simplicity, we chose the case of aluminium where
dislocation core spreading is at most 2–3 b [34]. For a
220 reflection in aluminium, the excursion from Bragg
orientation corresponding to sg = 0.2 nm−1 is achieved
for the (g/4.25g) condition (Fig. 2). The image of an iso-
lated dislocation (b = ± 1/2[110]) is shifted away from
its geometrical projection by about 1.7 nm either way de-
pending on the sign of the product sg g.b (Fig. 3). Under
the present choice for the sense of the line, the dipole im-
age is the widest for sg > 0. The simulation indicates that
the above averaging method works satisfactorily down

to ytrue ≈ 6 nm (e.g. one finds yobs ≈ 10.4 nm and ≈
7 nm for ytrue = 10.6 nm and = 7.1 nm, respectively).
However, below a critical height yc of 6 nm or so, av-
eraging the pair of apparent dipole widths starts to be
problematic because the images of the two dislocations
simulated under sg < 0 show so much overlap that they
cannot be resolved. There is therefore a range a dipole
heights where the averaging method is inapplicable for
image overlapping persists down to ytrue ≈ 2.1 nm, be-
low which the image again exhibits two separate peaks,
while the wholesale signal has considerably weakened.
It is worth pointing out that the peak corresponding to
the right-hand side dislocation is now located on the left-
hand part of the profile and vice versa. In this case, yobs,
taken as the average between the broad and narrow sepa-
rations, is of course always overestimated (e.g. when ytrue

= 1.15 nm then yobs ≈ (4.1 + 1.5)/2 = 2.3 nm). Tak-
ing into account the image interchange yields yobs ≈ [4.1
+ ( − 1.5)]/2 = 1.3 nm, then consistent with ytrue but the
available signal is so much lessened that the measurement
is not feasible in practice. As sg is decreased, the critical
dipole height yc below which adverse overlapping effects
take place is a function of sg. It increases as sg decreases.

Further complications in determining dipole heights
naturally arise in systems where dislocations are disso-
ciated. This has been discussed very early by Carter and
Holmes [35] in the case of faulted dipoles in Cu. Here
a faulted dipole is a set of three adjacent fault strips ex-
hibiting a Z-shaped cross-section and bordered outside
by Shockley partial and stair-rods inside. Difficulties in
interpreting weak-beam images of superimposed partials
have been further emphasized in the case of Ni [36]. In
the case of “perfect” dipoles, that is, dipoles comprised of
a pair of dissociated dislocations, several causes of uncer-
tainties may be encountered. Firstly, at equilibrium such
dipoles should not assume the same 45◦ configuration as
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for dipoles of perfect edge dislocations, this is especially
true when the dipole height becomes of the order of or
smaller than the separation between the companion par-
tials. In Cu and Ni, the stacking fault width at equilibrium
in the edge orientation amounts to 3.8 ± 6 nm [19] and
2.6 ± 0.8 nm [20], respectively, to be compared to the
lowest dipole heights identified in these metals of 3 nm
[16] and 2 nm [17], respectively. Second, for small dipole
heights one may expect three possibilities for the cou-
pling between the partials (leading/leading with the two
trailing partials unpaired, or vice versa, or two pairs of
leading/trailing partials). The real configuration may thus
be significantly distinct from the assumption of a dipole
of perfect dislocations that is usually made to estimate
dipole heights.

To the author’s knowledge, neither the limitations in-
troduced by image overlaps in measuring small heights of
dipoles of undissociated dislocations nor the issue related
to the position of partial dislocations in the dissociated
cases have been suitably discussed in the three materials
where dipoles height measurements have been reported
so far.

4.2. Dissociation distances
Measuring dissociation distances to derive the energy of
some planar defect(s) requires certain precautions and
corrections. As mentioned earlier, related issues had been
thoroughly investigated for pairs of unlike partials when
use of the weak-beam method was at its infancy. The
case of two or more partials with identical Burgers vec-
tors seems a priori less problematic for one would expect
image shifts to be about the same for the partials. Based
on the CRW criteria, a first attempt at elucidating this
aspect has been made and analytical corrections derived
by Doukhan in the case of spinel MgAl2O4 [37]. Later,
observed separation distances have been somewhat care-
lessly made use of to determine surface defect energy, es-
sentially APB energy, in intermetallics [38, 39]. The first
serious analysis of the convoluted image of a pair of like
partials is due to Baluc et al. [40, 41] who demonstrated
the strong influence of elastic anisotropy and displace-
ment field overlaps on the differences between observed
and true dissociation distances in a Ni3Al-based alloy.
The correction was found as large as 10 and 30% for a
dissociation on the {001} and {111} planes, respectively.
These effects have been discussed at length for Ni3Al-
based alloy [12, 13, 42] where the ratio of APB energies
on the {001} and {111} planes contributes to determine
the conditions of dislocation locking which plays a pivotal
role in the anomalous temperature dependence of the yield
stress. It is noted that uncertainties on image shifts arising
from the theoretical approximations involved in simula-
tions have little influence, if any, for these uncertainties
should contribute the same amount to both images.

A curious property may complicate APB energy deter-
mination [43]. It has been indeed observed that due to a
large friction force exerted on partials on the cube plane,
these cannot achieve full transition from the {111} slip
plane to the {001} favourable cross-slip plane, in order to
form the so-called Kear-Wilsdorf lock. What happens is
that the configuration assumes a non-equilibrium configu-
ration straddling the two planes. Since there is no need of
a stair-rod like partials at the intersection between the two
APB planes, the property can be detected only through
tilting experiments. However, deriving an APB energy in
this case is rather safe for every dislocation character but
screw. In any orientation, lattice friction may make it dif-
ficult to ensure that this is an equilibrium configuration.

5. Physical properties of crystals exhibiting
magnetic or atomic order

As exemplified in the above sections, the weak-beam
method is essentially utilized to analyze and to resolve
distortion fields in the vicinity of dislocations. Much less
familiar is another application consisting in taking advan-
tage of the contrast displayed by surface defects to mea-
sure physical properties such as the correlation length, ξ ,
in ordered alloys [21, 22] together with wall thickness in
ferroelectric materials [23, 24]. In those cases, all what
one considers are properties of the set of fringes observed
under weak beam.

As to ferroelectric domain walls whose finite thickness
is accounted for through a linear displacement field, thick-
ness fringes are simulated by varying simultaneously the
thicknesses of the sample, that of the domain wall, the
deviation parameter sg and absorption coefficients. Typi-
cally, a domain wall thickness of about 2.15 nm is derived
by minimization of the mean square difference between
simulated and experimental profiles.

In alloys undergoing a second-order phase transition,
APB fringe contrast includes an attenuation function, it-
self dependent upon the correlation length. This enables
the derivation of crystal parameters such as the correlation
length, ξ , which itself scales with APB thickness, together
with the temperature dependence of ξ below the critical
transition temperature, Tc. What happens is that given sg
the fringe system fades out as ξ increases, and disappears
at some specific value of ξ . Typically, disappearance oc-
curs for a correlation length of 150 and 40 nm for (g, 2g)
and (g, 5g), respectively. What makes the method quite
convenient is that fringe contrast roughly which varies
as exp[ − 2π2 sgξ ], making the weak-beam images ex-
tremely sensitive to minute changes in sg and/or ξ . Then
in situ observations of APB fringes as a function of tem-
perature for various (g, ng) conditions indicate that 20◦
below Tc, ξ is about 15 nm; it is 4 nm 35◦ below Tc [22].
In another experiment under fixed (g, 4g) condition [21],
a fit between experimental and simulated profiles was uti-
lized to derive the correlation length dependence upon Tc
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– T. The estimated values are similar to those found in
[22], e.g. 5 nm for Tc − T = 34 K. The method is fully
validated by the value of the critical exponent, ν in ξ =
[(Tc − T)/T]ν , which amounts to 0.64 ± 0.1, very close
indeed to its theoretical estimate of 0.63.

6. Concluding remarks
‘Conditions’ are not what guarantees good weak-beam
pictures. Instead, it is highly recommended to favor a
sound appreciation of the best experimental strategy that
the features of interest may require. To improve image
quality and defect visibility, safely conducted numerical
image processing should not be dismissed. Admittedly,
the quality of samples is of paramount importance and this
requires outstanding skill and care during the preparation
stage. Not the least requirement though for conducting
defect analysis is imagination. In effect, the main difficulty
in interpreting TEM images of post mortem deformed
microstructures does not originate from contrast analysis
but from the need to reconstruct the missing segment,
that is, all that happened in the sample from the end of
the thermomechanical treatment under investigation to
the time the foil is ready for observation. That missing
segment may have involved all sorts of artifacts. Similar
issues are met during in situ experiments since then one
has to wonder to what extent the proximity of free surfaces
affects dislocation properties (such as cross-slip), hence to
what extent in situ observations are representative of the
mechanisms taking place in the bulk (see, however, [44]).

These are actually some of the factors that have made
people prefer numerical experiments to TEM investiga-
tions. It is not so that simulations are artefact-free, but
at variance from real crystals, numerical crystals accept
simplifying assumptions which make it possible to study
the implications of these assumptions one after the other.
The potential of such a procedure is indeed quite fascinat-
ing, yet it has recently led to a new attitude where little is
taken for certain if not observed in the computer. A nu-
merical experiment is easily regarded as a solid proof. It
is not infrequent though that the most spectacular simula-
tions only reproduce mechanisms which, based on TEM
observations and intuition, had been inferred two or three
decades ago but forgotten since.

While multiscale computer simulations have flourished
around the world in the last decade or so, expertise in
experimental analysis of dislocations in real samples has
gradually faded away. For reasons that are easy to figure
out, the trend is irreversible.
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26. R . S C H Ä U B L I N and P. S TA D E L M A N N , Mater. Sci. Engng. A 164

(199) 373.
27. C . B O N T E M P S-N E V E U (University of Paris-Sud, 1991).
28. J . O L I V E R (University of Paris-Sud., 1991).
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